检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2010年第2期163-166,共4页Computer Engineering and Applications
基 金:湖南省自然科学基金(No.07JJ6115);湘潭大学博士科研启动项目(No.06QDZ23)~~
摘 要:针对图像的低层视觉特征和高层语义特征之间的鸿沟,利用一个多输出的BP神经网络,分析低层视觉特征,提取图像的主要颜色、灰度共生矩阵和7个不变矩向量作为网络的输入,用语义期望值作为网络的输出,并用加入动量因子和自适应学习率的BP算法来训练该网络。训练完成后,该网络能够对自然图像进行多种语义分类,从而建立起了从低层视觉特征到语义特征之间的映射。改进的BP算法提高了训练的速度和可靠性,实验证明,该方法取得了较好的检索查全率和准确率。This paper establishes a multi-output BP neural network.It aims at to overcome the considerable gap between image low-level features and high-level semantic features.This method analyzes low-level features and extractes the images main color,gray level co-occurvence matrix and monent invariant vector.Use the vector as the network’s imput and the expections as its output,the system trains the network with improved BP algorithm.The arithmetic joines the monentun factor and learning rate adaption,when the training is over,this network can classify natural images.So it has established the mapping between the low-level features and high-level semantic features.In addition,the improved arithmetic has increased the rate and the stability.The experiment proves that it has obtained the high accuracy.
关 键 词:语义鸿沟 BP神经网络 多输出 改进的BP算法 图像分类
分 类 号:TP37[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68