检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闵晶晶[1] 孙景荣[2] 刘还珠 王式功[1] 曹晓钟[2]
机构地区:[1]兰州大学大气科学学院半干旱气候变化教育部重点实验室,兰州730000 [2]中国气象局培训中心,北京100081 [3]国家气象中心,北京100081
出 处:《应用气象学报》2010年第1期55-62,共8页Journal of Applied Meteorological Science
基 金:中国气象局多轨道业务建设项目"精细化气象要素预报业务系统";国家科技支撑计划项目(2007BAC29B03)共同资助
摘 要:传统BP(back propagation)算法在实际应用中具有网络结构参数和学习训练参数难以确定、泛化能力差、训练学习易陷入局部极小点等问题。该文在传统BP算法的基础上,提出一种改进算法,在训练过程中能自动确定各种参数,并避免陷入局部极小点,提高网络的泛化能力。利用2003—2005年5—9月中国国家气象中心T213的数值预报产品,通过动力诊断得出反映降水的物理量,然后从中挑选出与降水关系较好的25个因子,连同中国国家气象中心T213模式、日本气象厅业务模式和德国气象局业务模式相应的降水量预报结果作为预报因子。采用改进的BP算法建立江淮流域68个站24 h降水(08:00—08:00,北京时)3个等级(降水量≥0.1 mm,降水量≥10 mm,降水量≥25 mm)的预报模型。通过对2006—2007年5—9月68个站试报结果表明:改进BP算法对降水预报的TS评分大大高于传统BP算法,也高于几种模式的降水预报结果,同时,改进算法使降水预报的平均空报率、漏报率明显降低。Objective forecast of precipitation is difficult because of its complex nonlinear characteristics. In order to enhance the ability of forecasting precipitation, artificial neural network (ANN) method is applied in numerical weather products interpretation. Among different types of ANN, the back propagation (BP) neural network is the most popular and influential one. However, traditional BP algorithm has some limitations such as the difficulties in determining network structure and the learning parameters, poor generalization ability and possibility of misleading to local minimum in learning process, etc. To resolve these problems, an improved algorithm is proposed. Based on T213 numerical forecast products of National Meteorological Center from May to September during 2003-2005, 25 factors are selected in terms of dynamic diagnostic analysis and statistical methods. The precipitation forecasts of operational global models from China National Meteorological Center, Japan Meteorological Agency and German Meteorological Administration are studied. Using the reformative BP algorithm, three grades forecast (≥0.1 mm, ≥10.0 mm, ≥25.0 mm) models are built to forecast 24- hour precipitation of 68 stations over Jiang-Huai Basin. During the training process, precipitation samples are randomly divided into two kinds according to a certain proportion, training samples and testing samples. They are used to train the network and to check the error of output respectively so that all parameters are confirmed. By repeating training and learning of network, an optimal network model is obtained. The optimized forecast model is used to forecast precipitation of different grades, times and stations, from May to September during 2006-2007. The forecasting results of improved BP algorithm are compared with those of tradition BP algorithm and numerical models outputs. The average threat score (TS) of improved BP algorithm is the highest; the average false alarm rate (FAR) and missing alarm rate (MAR) of imp
关 键 词:人工神经网络 BP算法 改进算法 建模 降水预报
分 类 号:P457.6[天文地球—大气科学及气象学] TP911.73[自动化与计算机技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195