检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程学院603教研室,陕西西安710025 [2]清华大学自动化系,北京100084 [3]中国科学院光电研究院,北京100190
出 处:《航空学报》2010年第1期165-171,共7页Acta Aeronautica et Astronautica Sinica
基 金:国家级项目
摘 要:提出一种适用于惯性/天文组合航天飞行器的稳定姿态滤波器,可以在不降低系统可观测度的前提下解决滤波计算中的奇异问题。对于奇异问题的传统解决方案是删除观测方程的一行,通过对比删除前后系统可观测度的变化,证明此解决方案会导致系统可观测度下降,并指出如何选择最优删除方案以使系统可观测度下降最小。根据对传统解决方案的分析结果,提出了不降低系统可观测度的投影算法。理论分析和仿真试验证明,应用了投影算法的姿态滤波器更为稳定,估计效率更高。This article presents a stable extended Kalman filter algorithm for spacecraft attitude determination by means of angular rate and vector observation. The filter using the proposed algorithm can solve the singularity in the filtering computation without any loss of system observability degree. The traditional singularity-solving method is to delete a line from the measurement equation. By comparing the system observability degree after and before the line deleting,it is proved that the traditional method tends to decrease the system observability degree. This article also proposes a method to choose the optimal deleting line to reduce the obser-vability degree loss to a minimum. The proposed projection algorithm gives a general solution to the singularity problem without observability degree loss. Theoretical analysis and numerical simulation show that an attitude filter using the projection algorithm provides more stable performance and higher estimation efficiency than one using the traditional method.
关 键 词:姿态估计 天文导航 卡尔曼滤波 可观测度 系统稳定性
分 类 号:V249.328[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.97.68