非自治时滞微分方程的扰动全局吸引性  被引量:2

On the Perturbational Global Attractivity of Nonautomous Delay Differential Equations

在线阅读下载全文

作  者:罗交晚[1] 刘再明[1] 

机构地区:[1]长沙铁道学院科研所

出  处:《应用数学和力学》1998年第12期1107-1111,共5页Applied Mathematics and Mechanics

基  金:湖南省自然科学基金;湖南省教委科研基金

摘  要:考虑具有扰动项的非自治时滞微分方程x(t)=-a(t)x(t-τ)+F(t,xt),t≥0()其中F:[0,∞)×C[-δ,0]→R且连续,C[-δ,0]表示将[-δ,0]映射到R的所有连续函数集合·F(t,0)≡0,a(t)∈C((0,∞),(0,∞)),τ≥0·通常文献对a(t)不依赖于t即a(t)为自治情形,研究了方程()零解的局部或全局渐近性质[1~5,7]·本文对a(t)为非自治即依赖于t之情形,获得了方程()零解全局吸引的充分条件,所得结论在某种意义上说是不可改进的·本文改进和推广了已有文献的相应结果,同时本文采用的方法可应用到非自治非线性扰动方程·Consider the perturbed nonautonomous linear delay differential equation (t)=-a(t)x(t-τ)+F(t,x t), t≥0(*) Where x t(s)=x(t+s) for -δ≤s≤0. Suppose that a(t)∈C([0,∞),(0,∞)),τ≥0,F:[0,∞)×C→R is a continous functions and F(t,0)≡0. Here C is the space of con ̄tinuous functions Φ:[-δ,0]→R with ‖Φ‖<H for the norm ‖Φ‖= sup -δ≤s≤0|Φ(s)|, where |·| is any norm in R and 0<H≤+∞. Most of the known papers have been concerned with the local or global asymptotic behavior of the zero solution of Eq.(*) when a(t) is independent of t i.e., a(t) is autonomous. The aim in this paper is to derive the sufficient conditions for the global attractivity of the zero solution of of Eq.(*) When a(t) is nonautomous. Our results, which extend and improve the known results, are even “sharp”. At the same time, the method used in this paper can be applicable to the perturbed nonlinear equation.

关 键 词:扰动全局吸引性 时滞微分方程 渐近稳定性 

分 类 号:O175.13[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象