基于电子鼻的鱼类新鲜度估计研究  被引量:19

Research on the Fish Freshness Assessment Based on Electronic Nose

在线阅读下载全文

作  者:刘红秀[1] 李洪波[1] 李卫东[2] 骆德汉[3] 

机构地区:[1]广东药学院医药信息工程学院,广东广州510006 [2]广东药学院基础学院,广东广州510006 [3]广东工业大学信息工程学院,广东广州510006

出  处:《中山大学学报(自然科学版)》2010年第2期28-30,36,共4页Acta Scientiarum Naturalium Universitatis Sunyatseni

基  金:广东省自然科学基金资助项目(7003172)

摘  要:以新西兰市场上最受欢迎的四类鱼(红甲鱼、鲂鱼、唇指鲈和(澳洲)鲹)为对象研究鱼的新鲜度。在同一实验室环境下,运用便携式电子鼻Cyranose 320测量这四类鱼被储藏第1,2,5,6,7,8,9,10(第3,4天的未测量)天后对应的同一样品,每个样品测量一次对应每个传感器平均采样2000个左右数据,获得大约2.048×106[4(鱼)×8(天)×32(传感器)×2 000(采样)=2 048 000]个数据。将实验数据进行特征提取及人工神经网络(ANN)分析处理,得到传感器对每类鱼每天的响应模式,进而估计鱼的新鲜度,获得了91%以上的正确识别率。研究结果表明该方法是实用可行的。The freshness on four selected types of fish ( Red Snapper, Gurnard, Tarakihi and Trevally) which are the most common fish in the New Zealand market was investigated. A portable Cyranose 320 E- nose was used in our experiments under the same laboratory condition. It converted the odour of four selected types of fish to smell prints over days 1,2, 5,6, 7, 8, 9, and 10 after catching the fish (no data was collected on days 3 and 4). Approximately 2 000 samples were collected by each sensor during each process. About2048 000 data samples [4 (fish) × 8 (days) ×32 (sensors) x2000 (samples) = 2 048 000 ] were obtained. Extracted features from the E-nose sensors and artificial neural network (ANN) were used to assess the freshness of the fish by classifying the smell print data according to the day of data collection. The proposed system has been successful in identifying the number of days after catching the fish with an accuracy of up to 91%. The result showed that the proposed network architec- ture proved very suitable for fish freshness assessment.

关 键 词:电子鼻 信息处理 神经网络 鱼的新鲜度估计 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象