检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学自动化系,安徽合肥230027
出 处:《机器人》2010年第2期190-195,共6页Robot
基 金:国家自然科学基金资助项目(60575033;60804020);国家863计划资助项目(2007AA04Z227)
摘 要:针对无迹卡尔曼滤波(UKF)缺乏在线自适应调整能力,导致系统状态估计精度较低的问题,提出了一种将强跟踪滤波器(STF)与UKF相结合的SLAM算法.该算法对于UKF中每个采样点采用STF进行更新,获得优化滤波增益,抑制噪声对系统状态估计的影响,使系统状态估计迅速收敛到真实值附近.仿真实验对比了当前几种SLAM算法在不同噪声环境下的性能,实验表明,基于强跟踪UKF的自适应SLAM算法具有更好的鲁棒性和自适应性.Unscented Kalman filter (UKF) is lack of adaptive on-line adjustment ability that seriously decreases the estimation accuracy of system state. To deal with this problem, this paper proposes an improved SLAM (simultaneous localization and mapping) algorithm that combines the strengths of strong tracking filter (STF) and UKF. Each sampling point of UKF is updated by STF, the effects of noises on system state estimation are suppressed by optimizing filter gains, and the system state estimation converges to real values quickly. Performances of several SLAM algorithm in different noisy environments are compared by simulation. The experimental results show that this adaptive SLAM algorithm based on STF and UKF is of better adaptability and robustness.
关 键 词:同时定位与地图创建 UKF-SLAM 强跟踪滤波器 自适应滤波
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229