检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学,北京102206
出 处:《制造业自动化》2010年第3期159-162,共4页Manufacturing Automation
摘 要:影响电力需求的因素很多,单一预测方法很难满足不同情况的预测需要,而现有组合预测模型又主要基于经验风险最小,预测精度受组合模型的限制。本文提出一种基于支持向量机的电力负荷组合预测模型,该模型利用结构风险最小化原则代替传统的经验风险最小化,充分挖掘原始数据和单一预测模型的信息,以单一模型的预测数据为预测样本,选择多项式函数支持向量机进行组合预测。实际算例表明,支持向量机法克服了传统神经网络算法的局部最优、收敛难以控制等缺点,具有良好的可行性和有效性。
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3