Banach空间中的广义H-η-增生算子及其在变分包含中的应用  被引量:2

Generalized H-η-Accretive Operators in Banach Spaces With an Application to Variational Inclusions

在线阅读下载全文

作  者:罗雪萍[1] 黄南京[1] 

机构地区:[1]四川大学数学学院,成都610064

出  处:《应用数学和力学》2010年第4期472-480,共9页Applied Mathematics and Mechanics

基  金:国家自然科学基金资助项目(10671135);国家自然科学基金重点资助项目(70831005);教育部高等学校博士点基金资助项目(20060610005)

摘  要:在Banach空间中,引入和研究了新的广义H-η-增生算子,对广义m-增生算子与H-η-单调算子提供了一个统一的框架.还定义了广义H-η-增生算子相应的预解算子,并且证明了其Lipschitz连续性.作为应用,考虑了涉及广义H-η-增生算子的一类变分包含问题的可解性.利用预解算子方法,构造了一个求解变分包含的迭代算法.在适当假设下,证明了变分包含解的存在性和由算法生成的迭代序列的收敛性.A new notion of generalized H-y-accretive operator which provided a unifying framework for the generalized m-accretive operator and the H-η-monotone operator in Banach spaces was introduced and studied. A resolvent operator associated with the generalized H-η-accretive operator was defined and its Lipschitz continuity was shown. As an application, the solvability for a class of variational inclusions involving the generalized H-η-accretive operators in Banach spaces was considered. By using the technique of resolvent mapping, an iterative algorithm for solving the variational inclusion in Banach space was constructed. Under some suitable conditions, the existence of solution for the variational inclusion and the convergence of iterative sequence generated by the algorithm were proved.

关 键 词:广义胁H-η-增生算子 预解算子 变分包含 迭代算法 收敛性 

分 类 号:O177.91[理学—数学] O177.99[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象