检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100191
出 处:《北京航空航天大学学报》2010年第3期333-337,共5页Journal of Beijing University of Aeronautics and Astronautics
摘 要:针对无人机舵面电动加载系统具有非线性及多余力矩的特点,提出了一种自适应CMAC(Cerebellar Model Articulation Controller)神经网络与自适应神经元控制器并联构成复合控制结构.该控制策略以系统的指令输入和实际输出作为CMAC的激励信号,以系统的当前控制误差作为CMAC的训练信号.提出了利用误差在线自适应调整学习率的方法,消除了常规前馈型CMAC的过学习和不稳定现象.建立了无人机舵面电动加载系统的数学模型,给出了具体的控制结构和算法.仿真结果表明:该方法有效抑制了加载系统的多余力矩,增强了系统的稳定性,明显改善了舵面电动加载系统的动态性能.Aiming at the nonlinearity and the surplus torque in rudder electric loading systems of unmanned aerial vehicle(UAV),a self-adaptive cerebellar model articulation controller(CMAC) was proposed,which was parallel to an adaptive neuron controller.This hybrid control strategy adopted the desired value and the actual output as the incentive signals of CMAC,and put the current system error as the training signal of CMAC.The method was proposed by using the error to adjust the learning rate on line,which eliminated the excess self-learning phenomena.The mathematical model of rudder electric loading systems for UAV was established and the detailed control structure was put forward.Simulation results show that the proposed hybrid controller can effectively eliminate the surplus torque,enhance the control stability of the systems and fairly improve the dynamic loading performances of the systems,which is highly suitable for real-time control of nonlinear systems.
关 键 词:舵面电动加载系统 多余力矩 小脑模型关联控制器神经网络 自适应控制 自适应神经元 学习率
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185