检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东华理工大学数学与信息科学学院,江西抚州344000
出 处:《江西科学》2010年第2期141-143,149,共4页Jiangxi Science
基 金:国家自然科学基金(10861001);江西省自然科学基金(2009GZS0001)
摘 要:给出了一类二维热传导方程反问题中边界温度场的重建算法。首先将反问题归结为一泛函极小化问题;然后通过对未知边界的有限维逼近,将反问题分解成一系适定的热传导方程正问题;最后根据偏微分方程线性问题的叠加原理,将泛函极小化问题离散为线性代数方程组,再应用Tikhonov正则化方法求解线性代数方程组,从而获得边界温度场的数值解。数值算例表明了本文的算法是有效的,且具有较强的稳定性。An algorithm is presented for reconstructing the boundary temperature of a two - dimensional inverse heat conduction problem. The inverse problem is formulated to a functional minimization problem ; and it is transformed into a series of direct problems of heat conduct equation that are well -posed by a finite approximation of the unknown boundary temperature. Finally, according to partial differential equations the superposition principle of linear problem, the functional minimization problem is discretized into linear algebraic equations, then, we obtain the approximate solution of the unknown boundary temperature by applying Tikhonov regularization method for solving linear algebraic equations. Numerical example shows that the presented algorithm is efficient and it has a strong stability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15