检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄日朋[1]
出 处:《计算机应用》2010年第5期1359-1362,共4页journal of Computer Applications
基 金:滁州学院科研基金资助项目(2008kj014B)
摘 要:有理Bernstein-Bzier曲线在计算机辅助设计和计算机图形学上具有广泛的应用。在研究了经典的Bernstein-Bzier曲线及deCasteljau算法的基础上,结合q-Bernstein多项式,给出了有理q-Bernstein-Bzier曲线的构造方法、性质和计算有理曲线的deCasteljau算法,并讨论了曲线的细分和升阶的方法,通过改变q的取值,可以获得有理曲线族,在曲线造型上具有较强的灵活性。最后通过表示圆锥曲线和数字图像插值证明有理q-Bernstein-Bzier曲线的推广是有效的。Rational Bernstein-Bézier curve has been applied widely in computer-aided design and computer graphics.To construct a kind of rational q-Bernstein-Bézier curves based on classical Bernstein-Bézier curves,de Casteljau algorithm and q-Bernstein polynomials were studied.Some properties,the algorithm for computing curves,the technique concerning subdivision and degree elevation of curves were also discussed.A family of rational Bernstein-Bézier curves could be obtained by changing the value of q.The results indicate that the rational curves have strong flexibility.At last,the generalization of rational q-Bernstein-Bézier curves was proved to be effective by conic curve and representation digital image interpolation.
关 键 词:有理曲线 de CASTELJAU算法 曲线细分 曲线升阶 圆锥曲线 图像插值
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.78