有理q-Bernstein-Bzier曲线的构造及其应用  被引量:3

Construction and application of rational q-Bernstein-Bézier curves

在线阅读下载全文

作  者:黄日朋[1] 

机构地区:[1]滁州学院数学系,安徽滁州239000

出  处:《计算机应用》2010年第5期1359-1362,共4页journal of Computer Applications

基  金:滁州学院科研基金资助项目(2008kj014B)

摘  要:有理Bernstein-Bzier曲线在计算机辅助设计和计算机图形学上具有广泛的应用。在研究了经典的Bernstein-Bzier曲线及deCasteljau算法的基础上,结合q-Bernstein多项式,给出了有理q-Bernstein-Bzier曲线的构造方法、性质和计算有理曲线的deCasteljau算法,并讨论了曲线的细分和升阶的方法,通过改变q的取值,可以获得有理曲线族,在曲线造型上具有较强的灵活性。最后通过表示圆锥曲线和数字图像插值证明有理q-Bernstein-Bzier曲线的推广是有效的。Rational Bernstein-Bézier curve has been applied widely in computer-aided design and computer graphics.To construct a kind of rational q-Bernstein-Bézier curves based on classical Bernstein-Bézier curves,de Casteljau algorithm and q-Bernstein polynomials were studied.Some properties,the algorithm for computing curves,the technique concerning subdivision and degree elevation of curves were also discussed.A family of rational Bernstein-Bézier curves could be obtained by changing the value of q.The results indicate that the rational curves have strong flexibility.At last,the generalization of rational q-Bernstein-Bézier curves was proved to be effective by conic curve and representation digital image interpolation.

关 键 词:有理曲线 de CASTELJAU算法 曲线细分 曲线升阶 圆锥曲线 图像插值 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象