检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青岛大学数学系,青岛266071
出 处:《数学学报(中文版)》2010年第3期571-578,共8页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金资助项目(10971117;10675086);山东省基金资助项目(Y2006A04)
摘 要:设A是Jordan代数,如果映射d:A→A满足任给a,b∈A,都有d(aob)=d(a)o b+aod(b),则称d为可乘Jordan导子.如果A含有一个非平凡幂等p,且A对于p的Peirce分解A=A_1⊕A_(1/2)⊕A_0满足:(1)设ai∈Ai(i=1,0),如果任给t_(1/2)∈A_(1/2),都有a_i○t_(1/2)=0,则a_i=0,则A上的可乘Jordan导子d.如果满足d(p)=0,则d是可加的.由此得到结合代数和三角代数满足一定条件时,其上的任意可乘Jordan导子是可加的.Let A be a Jordan algebra.If the map d:A→A satisfies d(a o b) = d(a) o b + a o d(b) for all a,b∈A,then d is called a multiplicative Jordan derivation on A.Our main objective in this note is to prove the following.Suppose A has an idempotent p(p≠0,p≠1) which satisfies that the Peirce decomposition of A with respect to p,A = A_1 ? A_(1/2) ? A_0,satisfies that (1) Let a_i∈A_i(i =,0).If a_i o t_(1/2) =0 for all t_(1/2)∈A_(1/2),then a_i = 0. If d is any multiplicative Jordan derivation of A which satisfies that d(p) = 0,then d is additive.As its application,we get the result that every multiplicative Jordan derivation on some associative algebras and triangular algerbas is additive.
关 键 词:JORDAN代数 可乘Jordan导子 可加性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74