Jordan代数上的可乘Jordan导子  被引量:3

Multiplicative Jordan Derivations on Jordan Algebras

在线阅读下载全文

作  者:纪培胜[1] 赖弋新[1] 侯恩冉[1] 

机构地区:[1]青岛大学数学系,青岛266071

出  处:《数学学报(中文版)》2010年第3期571-578,共8页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(10971117;10675086);山东省基金资助项目(Y2006A04)

摘  要:设A是Jordan代数,如果映射d:A→A满足任给a,b∈A,都有d(aob)=d(a)o b+aod(b),则称d为可乘Jordan导子.如果A含有一个非平凡幂等p,且A对于p的Peirce分解A=A_1⊕A_(1/2)⊕A_0满足:(1)设ai∈Ai(i=1,0),如果任给t_(1/2)∈A_(1/2),都有a_i○t_(1/2)=0,则a_i=0,则A上的可乘Jordan导子d.如果满足d(p)=0,则d是可加的.由此得到结合代数和三角代数满足一定条件时,其上的任意可乘Jordan导子是可加的.Let A be a Jordan algebra.If the map d:A→A satisfies d(a o b) = d(a) o b + a o d(b) for all a,b∈A,then d is called a multiplicative Jordan derivation on A.Our main objective in this note is to prove the following.Suppose A has an idempotent p(p≠0,p≠1) which satisfies that the Peirce decomposition of A with respect to p,A = A_1 ? A_(1/2) ? A_0,satisfies that (1) Let a_i∈A_i(i =,0).If a_i o t_(1/2) =0 for all t_(1/2)∈A_(1/2),then a_i = 0. If d is any multiplicative Jordan derivation of A which satisfies that d(p) = 0,then d is additive.As its application,we get the result that every multiplicative Jordan derivation on some associative algebras and triangular algerbas is additive.

关 键 词:JORDAN代数 可乘Jordan导子 可加性 

分 类 号:O177.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象