检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北理工大学计算机与自动控制学院,唐山063009
出 处:《仪器仪表用户》2010年第3期30-32,共3页Instrumentation
摘 要:轧钢厚度控制系统的数学模型难以精确建立,传统的PID控制器的自适应能力较差,很难达到满意的控制效果。本文根据以上问题,提出了一种新的控制方法,即基于RBF神经网络自整定PID控制方法。这种控制方法结合了RBF神经网络和PID控制器的控制优势,不仅具有很强的自适应能力、鲁棒性,而且充分发挥了PID控制优势,并且将这种控制方法应用在带钢厚度的控制系统中,取得了很好的控制效果,证明了控制方案的正确性和有效性。The system of rolling-thickness control is difficult to establish a accurate mathematical model,and the traditional PID controller has a poor adaptive ability,so the effect of control is always not satisfying. According to the problems above,This paper proposes a new control method,self-tuning PID controller based on RBF neural network. This control method integrates advantages of RBF neural network and the PID controller, not only has strong self-adapting ability and robustness,but also fully exerts the advantages of PID controller,and it achieved a very good control effect when used in strip thickness control system, that proved the correctness and effectiveness of this control method.
关 键 词:RBF神经网络 自整定PID控制器 厚度控制 自适应 鲁棒性
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31