检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机仿真》2010年第6期151-154,共4页Computer Simulation
摘 要:在研究网络安全问题中,针对传统的模糊C均值聚类算法(FCM)在海量的入侵检测数据中容易陷入局部最小值,运行效率低下以及结果稳定性差的缺点,提出了一种FCM和广义回归网络(GRNN)相结合的入侵检测算法。根据GRNN的高速全局寻优特点,利用FCM将原空间的待分类样本进行聚类,利用距离FCM聚类中心最近的样本点训练GRNN模型并更新中心点,直至得到稳定的聚类中心。为解决传统的FCM在入侵检测中结果稳定性差和收敛性差,检测精度低的问题。经仿真实验结果证明,结合的方法有效的克服上述缺点,提高了数据的检测率和稳定性。To solve the problem that conventional fuzzy C -means( FCM ) clustering algorithm in the mass invasion examination data is easy to fall into the local minimu, low in operation efficiency and poor in the result stability, the paper proposed one kind of FCM and the GRNN union invasion examination algorithm. According to the charac- teristic of the overall situation optimization and the best optimization characteristic of GRNN, this algorithm , uses FCM to carry out the clustering to the samples in original space , and uses the sample points which are most close to the FCM cluster centers to train GRNN models repeatedly and renews the central points until obtains the stable cluster centers. The purpose is to overcome the shortages of FCM, such as, poor stabilility, weak convergence and low intrusion detection precision. The experimental result proves that FCM - GRNN algorithm enhances data detection rate and stability.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28