检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学航天学院,黑龙江哈尔滨150001
出 处:《系统工程与电子技术》2010年第6期1334-1338,共5页Systems Engineering and Electronics
基 金:"十一五"国防预研项目资助课题
摘 要:采用粒子滤波的目标跟踪算法在粒子数目较多时计算量大、实时性差,针对该问题提出了一种新的基于支持向量机数据融合的实时粒子滤波算法。该算法在估计窗实时粒子滤波的基础上,使用支持向量机融合窗内不同时刻粒子集,并根据融合的结果更新粒子权值,实现对目标状态的快速跟踪。相对于原算法采用最小化Kullback-Leibler距离来调整估计窗混合分布的权值,该方法的计算复杂度低、速度快,进一步提高了算法的实时性。对纯角度目标跟踪问题的仿真结果表明了该算法的可行性和有效性。To overcome the drawback of high computational burden and poor real-time capability in target tracking problems using particle filter with a large number of particles,an improved real-time particle filter(RTPF) algorithm is proposed which is based on data fusion with support vector machines(SVM).The SVM-RTPF employs the estimation window RTPF as basic framework and uses the SVM for fusing the particles at different time in the window,so the target is tracked quickly by the particles and their updated importance weights according to the fused results.Compared with the RTPF algorithm based on minimizing the Kullback-Leibler distance to adjust mixing weights in the window,the new algorithm is simple and more suitable to the range of real-time applications.The bearings-only tracking simulation results demonstrate the feasibility and superiority of the novel algorithm.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3