基于SVM数据融合的实时粒子滤波算法  被引量:7

Real-time particle filter based on data fusion with support vector machines

在线阅读下载全文

作  者:蒋蔚[1] 伊国兴[1] 曾庆双[1] 

机构地区:[1]哈尔滨工业大学航天学院,黑龙江哈尔滨150001

出  处:《系统工程与电子技术》2010年第6期1334-1338,共5页Systems Engineering and Electronics

基  金:"十一五"国防预研项目资助课题

摘  要:采用粒子滤波的目标跟踪算法在粒子数目较多时计算量大、实时性差,针对该问题提出了一种新的基于支持向量机数据融合的实时粒子滤波算法。该算法在估计窗实时粒子滤波的基础上,使用支持向量机融合窗内不同时刻粒子集,并根据融合的结果更新粒子权值,实现对目标状态的快速跟踪。相对于原算法采用最小化Kullback-Leibler距离来调整估计窗混合分布的权值,该方法的计算复杂度低、速度快,进一步提高了算法的实时性。对纯角度目标跟踪问题的仿真结果表明了该算法的可行性和有效性。To overcome the drawback of high computational burden and poor real-time capability in target tracking problems using particle filter with a large number of particles,an improved real-time particle filter(RTPF) algorithm is proposed which is based on data fusion with support vector machines(SVM).The SVM-RTPF employs the estimation window RTPF as basic framework and uses the SVM for fusing the particles at different time in the window,so the target is tracked quickly by the particles and their updated importance weights according to the fused results.Compared with the RTPF algorithm based on minimizing the Kullback-Leibler distance to adjust mixing weights in the window,the new algorithm is simple and more suitable to the range of real-time applications.The bearings-only tracking simulation results demonstrate the feasibility and superiority of the novel algorithm.

关 键 词:目标跟踪 支持向量机 实时粒子滤波 数据融合 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象