检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽工业大学电气信息学院,安徽马鞍山243002
出 处:《机电工程》2010年第2期75-78,共4页Journal of Mechanical & Electrical Engineering
摘 要:针对逆系统中非线性逆模型辨识困难的问题,研究了基于最小二乘支持向量机(LS-SVM)的逆模型辨识及控制,并用微粒子群算法(PSO)优化LS-SVM的参数和核函数参数。提出了一种由LS-SVM的逆模型与PID结合的复合控制系统,由LS-SVM辨识非线性系统的逆模型作为前馈控制器,形成直接逆控制。同时,由PID控制器构成反馈控制,克服直接逆控制鲁棒性不强的缺陷。仿真研究结果表明LS-SVM的逆模型辨识能力强,该复合控制系统具有比基于最近邻聚类的RBF神经网络逆控制系统更优的动态跟踪性能,更好的抗干扰能力和鲁棒性。Aiming at the problems of the inverse model identification in inverse system method,the realization of inverse system identification and control using least squares support vector machine(LS-SVM) were studied.A methodology,based on particle swarm optimization algorithm(PSO),for parameters selection of least squares support vector machine was proposed.A compound control strategy combing LS-SVM inverse system with PID controller was proposed.LS-SVM was used to identify the inverse model of nonlinear system,and this inverse model was used as feed-forward controller to design direct inverse control.Moreover,PID controller was used to realize feed-back control,which could overcome the limits of direct inverse control in performance and robustness.Simulation results demonstrate that LS-SVM has a good approximate capability for inverse model,and the proposed compound control system has better dynamic track performance,resistance to disturbance of system and robustness than RBF neural network.
关 键 词:逆模型辨识 最小二乘支持向量机 微粒子群算法 逆控制
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49