检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周海云[1]
机构地区:[1]军械工程学院基础部
出 处:《应用数学和力学》1999年第3期269-276,共8页Applied Mathematics and Mechanics
摘 要:设X为实Banach空间,X为其一致凸的共轭空间·设T:X→X为Lipschitzian强增生映象,L≥1为其Lipschitzian常数,k∈(0,1)为其强增生常数·设αn{},βn{}为[0,1]中的两个实数列满足:(ⅰ)αn→0(n→∞);(ⅱ)βn<k(1-k)L(1+L)(n≥0);(ⅲ)∑∞n=0αn=∞·假设un{}∞n=0和vn{}∞n=0为X中两序列满足:‖un‖=o(αn)与vn→0(n→∞)·任取x0∈X,则由(IS)1xn+1=(1-αn)xn+αnSyn+unyn=(1-βn)xn+βnSxn+vn(n≥0){所定义的迭代序列xn{}强收敛于方程Tx=f的唯一解·一个相关结果处理φ_半压缩映象的不动点的迭代逼近·Let X be a real Banach space with a uniformly convex dual X * . Let T:X→X be a Lipschitzian and strongly accretive mapping with a Lipschitzian constant L≥1 and a strongly accretive constant k∈(0,1) . Let α n,β n be two real sequences in satisfying: (ⅰ) α n→0 as n→∞; (ⅱ) β n<k(1-k)L(1+L), for all n≥0; (ⅲ) ∑∞n=0α n=∞ . Set Sx=f-Tx+x,x∈X . Assume that u n ∞ n=0 and v n ∞ n=0 be two sequences in X satisfying ‖u n‖=o(α n) and v n→0 as n→∞ . For arbitrary x 0∈X, the iteration sequence x n is defined by ( IS) 1x n+1 =(1-α n)x n+α nSy n+u n y n=(1-β n)x n+β nSx n+v n (n≥0) then x n converges strongly to the unique solution of the equation Tx=f . A related result deals with iterative approximation of fixed points of φ_ hemicontractive mappings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112