用伯努利多项式和欧拉多项式求解矩形薄板弯曲问题  

Solution of Bending Problem of Rectangular Thin Plate by Using Bermoulli Polynomial and Euler Polynomial

在线阅读下载全文

作  者:邓丽琼[1] 

机构地区:[1]福州大学土建学院,福州350002

出  处:《福建建筑》1999年第1期13-15,共3页Fujian Architecture & Construction

摘  要:本文利用伯势利多项式展开为偶调和三角级数,欧拉多项式展开为奇调和三角级数。假定矩形薄板的挠度由包含待定系数、部分满足边界条件的重三角级数构成。运用薄板的抚曲微分方程和边界条件,求出薄板挠度方程中的待定系数人而求出薄板的挠度和内力。文中的算例证实了该方法的可行性与精确度。In this paper, Bemoulli poboal is ooanded as even foric tritwtric seties, and Euler poly nomial is exPanded as edd boic tripetric series. The displacement of rectanglar thin plate is assumd as con sisting of tri^tric series which includes awniting coefficients and rneetS party forndare conditions. By uslng the difhantial equation of displac- of thin p1ate and Analy condihons of thin plate, awniting coefficients are de rived, therebo, the displacemen and internal force of thn plate are soved.ffe le in thipaper derenstrates the applicability and efficiency of the rnehe.

关 键 词:伯努利多项式 欧拉多项式 三角级数 薄板弯曲 

分 类 号:TU313[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象