检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学控制与仿真中心,黑龙江哈尔滨150001
出 处:《北京理工大学学报》2010年第6期674-677,682,共5页Transactions of Beijing Institute of Technology
基 金:国家自然科学基金资助项目(60474069)
摘 要:为了增强模糊神经网络的自学习和自适应能力,提出基于q-高斯的模糊神经网络评估飞机作战效能.采用q-高斯函数作为模糊神经网络的模糊隶属度函数,利用量子粒子群算法优化基于q-高斯的模糊神经网络参数,将非广延熵指数q编码为粒子并随着种群的进化自适应地调整.通过评估飞机作战效能,结果表明,基于q-高斯的模糊神经网络作战效能评估的结果更准确,自学习和自适应能力更强.In order to enhance the self-learning and adaptive ability of fuzzy neural network,fuzzy neural network based on q-Gaussian was proposed for operational effectiveness evaluation of the planes. q-Gaussian function was taken as fuzzy membership function of fuzzy neural network and quantum-behaved particle swarm optimization algorithm was employed to optimize the parameters of fuzzy neural network based on q-Gaussian. The nonextensive entropic index q was encoded in the particle and was adjusted adaptively in the evolution of population. The simulation result of operational effectiveness evaluation of planes shows that fuzzy neural network based on q-Gaussian can obtain more accurate results and has better self-learning and adaptive ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.183.238