检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院上海技术物理研究所医学影像实验室,上海市玉田路500号200083
出 处:《中国数字医学》2010年第7期32-35,共4页China Digital Medicine
基 金:国家自然科学基金(编号:30570512)~~
摘 要:孤立性肺结节是肺部的常见病灶,其良恶性诊断具有重要医学意义。利用计算机辅助诊断系统可提高医生诊断的准确率,减少漏诊率。构建了肺结节计算机辅助诊断系统,并选取了77例已确诊的孤立性肺结节的CT图像,并对系统性能进行了研究。该辅助诊断系统提取了67个图像模式特征,通过遗传算法对特征进行选择,选出高性能的特征子集,采用支持向量机作为分类器鉴别结节良恶性。试验结果表明,该方法可获得可靠的结果。Solitary pulmonary nodules (SPNs) are common findings in thoracic imaging and the diagnosis has great significance. Using computer-aided system could improve the accuracy rate in diagnosis and reduce the false dismissal rate. In this paper, a computer-aided system based on solitary pulmonary nodules was constructed and seventy-sever biopsy-confirmed CT cases with SPNs were included to test the performance of the system, A total of sixty-seven features were extracted in this study and high performance subsets of features were selected by genetic algorithm. The classifier of Support Vector Machine (SVM) was constructed with selected features to distinguish malignant from benign nodules. Experimental results verified the effectiveness of the presented system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249