基于改进ISOMAP算法的图像分类  被引量:3

Image Classification Using Modified ISOMAP Method

在线阅读下载全文

作  者:魏宪[1] 李元祥[1] 赵海涛[1] 庹红娅[1] 许鹏[1] 

机构地区:[1]上海交通大学航空航天学院,上海200240

出  处:《上海交通大学学报》2010年第7期911-915,共5页Journal of Shanghai Jiaotong University

基  金:上海自然科学基金资助项目(09ZR1413700;08ZR1410700)

摘  要:利用基于邻域的图像欧氏距离寻找最近邻,并用直接线性判别分析方法(Direct LDA)取代多维尺度分析法(MDS),提出一种改进的等距特征映射(ISOMAP)算法(KIMD-ISOMAP)进行降维.人脸图像分类试验表明:KIMD-ISOMAP提高了ISOMAP的分类能力,扩展了邻域半径的选取范围,在加高斯噪声和几何形变的情况下,该算法与其他方法相比,表现出较强的鲁棒性.The classical ISOMAP(isometric feature mapping,ISOMAP) method developed on reconstruction principle may not be optimal from the classification viewpoint.Besides,it is prone to suffer from the noise and the range of the neighborhood.In order to resolve these problems,a novel method called KIMD-ISOMAP for dimensionality reduction was presented.Firstly,a modified image euclidean distance is proposed and used to find the suitable neighborhood.Then,direct linear discriminant analysis(Direct LDA) is used to replace multi-dimensional scaling(MDS).Compared with ISOMAP,the experiments on face recognition show that KIMD-ISOMAP enhances the ability of classification and extends the range of the neighborhood.In addition,the KIMD-ISOMAP obtains a better performance than other algorithms for images classification with small noise and geometrical deformation.

关 键 词:流形学习 等距特征映射 直接线性判别 图像欧氏距离 降维 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP391[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象