检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州大学数学系
出 处:《兰州大学学报(自然科学版)》1999年第1期25-29,共5页Journal of Lanzhou University(Natural Sciences)
摘 要:在常微分方程的定性理论中,研究一个系统的全局渐近稳定性是一项困难且有意义的课题,通常采用构造Liapunov函数并利用稳定性理论中的有关定理来解这一难题.本文利用Dulac函数法,首先判定了不存在绕平衡点的闭轨线,然后利用Filippov变换和比较定理,证明了系统所有轨线的有界性,进而得到了平衡点是全局渐近稳定的.所研究的方程比前人研究的更一般。In the qualitative theory of ODE, the study of global stability of a certain system is a difficult but significant subject. Usually, the construction of the Liapunov function and some related theorems of stable theory of ODE are used in the problem. In this paper, the nonexistence of the closed orbit which circles the equilibrium is proved by using the Dulac function, then all the orbits of the system are bounded by the Filippov transformation and comparability theorem. The system studied in this paper is more general than those studied formerly and the way of studying is innovative. The two criterions developed are new and useful.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3