检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁昌斌[1]
出 处:《大学数学》2010年第3期103-107,共5页College Mathematics
摘 要:伽罗华数域L称有一个幂元整基,如果其代数整数环具有形式Ζα,其中α∈L.此时称α是L的幂元整基生成元.设α,β是L的两个幂元整基生成元,若β=m±σ(α),m∈Z,σ∈Gal(L/Q),则称α与β等价.本文主要研究分圆域Q(ζ33)的幂元整基问题.分圆域Q(ζ33)的代数整环是Z[ζ33],所以ζ33是Q(ζ33)的幂元整基生成元.设α是Q(ζ33)的幂元整基生成元,证明了当α+ā■Z时,α与ζ33等价.从而给出在此条件下分圆域Q(ζ33)的所有幂元整基生成元.A galois number field L is said to have a power bases if its ring of integers is of the form Z[α] for some α∈L.In this case α is called a generator of power bases in L.Let α and β be generators of two power bases in L,α and β is called equivalent if β=m±σ(α) for some m∈Z,σ∈Gal(L/Q).In this paper,we discuss the generators of power integral bases of cycloyomic field Q(ζ33).Z[ζ33]is the ring of integers of the cycloyomic field Q(ζ33),so ζ33 generates a power integral bases for Q(ζ33).Let α be another generator of a power integral bases of cyclotomic Q(ζ33),We proved that if α+ā Z,then α is equivalent to ζ33.Therefore,we can get all the generators of power integral bases for the cyclotomic field Q(ζ33) under the case.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.36.157