检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐超[1] 范耀祖[1] 沈晓蓉[1] 罗宇锋[2]
机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100191 [2]河南理工大学电气工程与自动化学院,焦作454000
出 处:《北京航空航天大学学报》2010年第8期1000-1004,共5页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家863高技术计划资助项目(2007AA12Z328);国家重点基础研究发展计划资助项目(2009CB72400201)
摘 要:设计了一种无人机视觉/惯性组合导航系统,将无人机和地标点的运动模型作为状态方程,视觉信息作为观测量构建了与之对应的滤波模型.在滤波处理上,采用了复杂加性噪声模型对系统噪声进行建模处理;将小波分析引入到UKF(Unscented Kalman Filter)滤波中得到小波-UKF滤波算法,以此克服视觉观测噪声对滤波的影响;采用最大后验概率准则(MAP,Maximum A Posterior)自适应估计观测噪声协方差阵,并将其反馈到滤波过程中克服了小波处理后观测噪声方差阵不易确定的不足.仿真结果证明:对滤波算法的改进可以有效地提高滤波估计的精度.A vision/inertial integrated navigation system was built.The corresponding filtering model was established by treating the motion models of aerial vehicle and landmark as the system function and the vision information as the observation.Complex additive noise model was adopted to describe the system noise in the filtering process.The wavelet-unscented Kalman filter(UKF) algorithm was obtained by introducing the wavelet analysis into UKF,thus the influence of vision observation noise on the filtering was inhibited successfully.Maximum a posterior(MAP) adaptive method was utilized to estimate the observation noise covariance matrix,which was further fed back into UKF to overcome the difficulties in identifying the covariance of observation after the wavelet de-noising.The simulation proved that the improvements in the filtering process to be effective in increasing the filtering accuracy.
关 键 词:视觉导航 UNSCENTED卡尔曼滤波 小波分析 复杂加性噪声 自适应
分 类 号:V249.325[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229