检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南石油大学理学院,成都610500 [2]四川大学数学学院,成都610064
出 处:《计算数学》2010年第3期233-246,共14页Mathematica Numerica Sinica
基 金:四川省科技攻关课题资助(05GG006-006-2)
摘 要:基于Reissner-Mindlin板问题的间断Galerkin有限元逼近,建立了一个对挠度空间和角位移空间取连续或间断元都适用的低阶有限元离散格式.取剪切力空间为分片常数元,挠度空间和角位移空间无论取间断元还是连续元,格式都是一致稳定的,并给出了H1范数估计及L2范数估计.作为应用,对几类低阶有限元空间讨论.结果表明,该格式对常见的低阶有限元空间都适用,并且若至少有一个元连续时,该格式需要的空间比中的都要简单.Based on the discontinuous Galerkin method, a unified low-order formulation, which can apply to both continuous and discontinuous transverse displacement and rotation finite element spaces, is proposed for the Reissner-Mindlin plate problem. Piecewise constants are used to approximate the shear stress vectors. This scheme is stable, whether continuous or discontinuous finite element spaces are used to approximate the transverse displacement and the rotation. And is convergent uniformly with respect to thickness. The optimal H1 and L2 error bounds are proven. Finally, several low order finite element spaces are given for different cases. It is proved that most low order finite element spaces can be applied to our scheme. If there is at least one variable continuous, the spaces needed in our method are simpler than those of [1, 2].
关 键 词:REISSNER-MINDLIN板 间断有限元 locking现象
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.232