检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2010年第10期2797-2801,共5页journal of Computer Applications
基 金:云南省自然科学基金资助项目(2005F0025M)
摘 要:针对人脑组织结构的不确定性和模糊性,提出模糊Gibbs随机场聚类与二维直方图相结合的分割方法。该方法首先利用均值、方差及邻域属性对隶属度函数进行定义,并建立模糊Gibbs随机场;然后以模糊Gibbs随机场作为先验知识、最大后验概率为判别准则来确定每一个像素的类归属以及它属于该类的隶属度,同时用模糊类的质心来更新类中心;最后将类中心引入二维直方图方法中,找到每个类之间的各个阈值点对图像进行分割。通过实验表明该算法能够准确分割出各种脑组织,对噪声的鲁棒性、结果的准确性及平滑性相对于模糊C均值(FCM)算法都有了很大的提高。For the uncertainty and the fuzziness of the organizational structure of human brain, an image segmentation algorithm that combines the clustering based on fuzzy Gibbs random field and the two-dimensional histogram method was proposed. In the algorithm, membership functions were defined by average, variance and neighborhood attributes, and fuzzy Gibbs random field was set up. Then Maximum A Posteriori (MAP) was used as the statistical clustering criteria, in which the fuzzy Gibbs random field was used to obtain prior knowledge, and every class center was updated by the centroid of the fuzzy class. Finally, every class center was introduced into two-dimensional histogram method to find segmentation points in each class region for image segmentation. The experimental results show that the proposed algorithm can separate out the various brain tissues accurately, and it is better than Fuzzy C-Means (FCM) algorithm in the noise robustness, the result accuracy and smoothness.
关 键 词:模糊Gibbs随机场 模糊聚类 二维直方图 多阈值分割 核磁共振图像
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173