一种基于Rough Sets和模糊神经网络的规则获取的方法  被引量:6

A Method of Fuzzy Rules Acquisition Based on Rough Sets and a Fuzzy Neural Network

在线阅读下载全文

作  者:武妍[1] 施鸿宝[1] 

机构地区:[1]上海铁道大学计算技术研究所,上海200331

出  处:《计算机工程与应用》1999年第7期7-9,23,共4页Computer Engineering and Applications

基  金:上海市重点学科项目

摘  要:该文提出了一种基于RoughSets思想获取初始规则,并通过模糊神经网络优化,最后再进行简化获取模糊规则,及模糊系统参数学习的方法。并通过实例进行了自动列车运行系统仿真。文中还基于上述实例,将这种基于模糊神经网络的学习与控制方法与标准的BP网络和基本的模糊系统方法进行了比较,并总结了这种方法的特点。结论表明,该文所提出的模糊规则生成和模糊系统学习方法是行之有效的。This paper proposes a method of fuzzy rules determination by acquiring original fuzzy rules based on rough sets, optimizing the fuzzy rules based on a fuzzy neural network, and reducing the fuzzy rules. A method of fuzzy system parameters tuning based on the fuzzy neural network is also proposed in the paper. An example is used to perform automatic train operation simulation. The example is also applied to compare the fuzzy neural network learning and control with standard BP network and basic fuzzy system learning and control methods, and the characteristics of the method is summed up. Finally, Conclusion indicates that methods of fuzzy rules generation and fuzzy system tuning is very effective.

关 键 词:模糊神经网络 模糊规则 规则获取 自动列车 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] U284.48[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象