检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学学报(中文版)》1999年第3期395-402,共8页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金
摘 要:本文引进非线性Lipschitz算子T的glb-Lipschitz数l(T),并证明:l(T)定量刻画非线性Lipschitz连续算子全体所构成的赋半范算子空间中可逆算子T保持可逆的最大扰动半径,因而具有特别重要意义。所获结果被应用来建立“非线性扰动引理”、非线性算子条件数、推广线性算子逼近理论和建立与矩阵理论中Gerschgorin圆盘定理对应的非线性Lipschitz连续算子谱集的包含域。in this paper, the glb-Lipschitz constant l(T) of nonlinear Lipschitz oper-ator T is introduced. It is shown that the constant l(T) qualitatively characterizesthe biggest perturbation radius at which the nonlinear invertible operator T maintainsits invertibility in the semi-norm operator space composed of all Lipschitzian contin-uous operators. The obtained results are used to establish a “Nonlinear PerturbationLemma”, to define nonlinear condition number and to extend linear operator approx-imation theory. We apply also the obtained results to construct an inclusion regionof spectrum of nonlinear Lipschitz operator which is a generalization of the famousGerschgorin theorem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49