检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]烟台职业学院信息工程系,烟台264670 [2]烟台职业学院开放教育学院,烟台264670
出 处:《制造业自动化》2010年第10期182-186,共5页Manufacturing Automation
摘 要:信息可视化是图形学的分枝,是一个新兴领域。为了展现海量信息,可视化技术需要对数据进行预先聚类操作。常用的聚类方法一般基于欧氏距离,这种方法计算量较大,特别是对于海量的多维信息。为了加快聚类速度,辅助可视化技术,本文将扩展BP网络用于可视化的聚类。该算法将多维信息当作BP网络的输入节点,其类别当作输出节点,通过对少量样本信息的学习,使BP网络具有分类能力,最终用于海量信息的分类。本文最后设计了一组实验,用实验结果证明算法的可行性。
关 键 词:BP神经网络 聚类 信息可视化 蚁群算法 K-MEANS
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30