基于径向基函数神经网络的高层建筑结构选型  被引量:1

Choice of structural styles for tall building based on radial basis function neural network

在线阅读下载全文

作  者:王全凤[1] 郑浩[1] 

机构地区:[1]华侨大学土木工程学院,福建泉州362021

出  处:《四川建筑科学研究》2010年第5期18-21,共4页Sichuan Building Science

摘  要:提出了应用径向基函数神经网络进行高层结构体系的选型,它充分运用了神经网络高度的非线性、高度的容错性和鲁棒性、自学习、实时处理等特点。研究表明,径向基函数神经网络运算速度较普通BP算法快103~104倍,并且精度高,可以高效、高质地进行高层建筑结构的选型。In the early stage of the design process,the design of tall building is a complex work. It needs various knowledge and professional experience for the structural design. A way concerned about the choice of structural styles is put forward based on radial basis function neural network ( RBFNN) in this paper. The qualities of the RBFNN,high-nonlinear,high-permissibility of error and high-robustness,self-adaptability,online work,and so on,are adequately used in the research. And,it is concluded that RBFNN runningspeed is 103~ 104 times faster than traditional BP neural network's algorithm. From the research,the method based on RBFNN can solve the problem on choice of structural styles effectively and quickly.

关 键 词:高层建筑 结构选型 人工神经网络 径向基函数神经网络 

分 类 号:TU973[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象