基于小世界模型的流形学习算法  被引量:1

Manifold learning algorithm based on the small world model

在线阅读下载全文

作  者:石陆魁[1] 杨庆新[2] 

机构地区:[1]河北工业大学计算机科学与软件学院,天津300401 [2]天津工业大学电气工程与自动化学院,天津300160

出  处:《计算机应用》2010年第11期2917-2920,共4页journal of Computer Applications

基  金:天津市应用基础及前沿技术研究计划项目(10JCZDJC16000)

摘  要:等距特征映射(ISOMAP)不仅计算复杂度很高,而且缺乏对新样本的学习能力。基于标志点的ISOMAP(L-ISOMAP)通过只保持一些标志点之间的测地线距离有效地降低了复杂度,然而标志点集的随机选择常常会导致较差的嵌入结果。为此,提出了一种基于小世界模型的流形学习算法。根据小世界模型的原理,该算法仅仅保持每个样本点与其k个最近邻和一些随机选择的远点之间的测地线距离,采用最速梯度下降法优化来得到数据的低维表示。理论分析表明,该算法的计算复杂度远远低于ISOMAP的复杂度。利用应力函数和剩余方差对3个算法进行了比较。实验结果表明,从该算法得到的结果与从ISOMAP得到的结果相近,且优于从L-ISOMAP得到的结果。同时,该算法可以实现对新样本的学习,对噪声也不太敏感。Isometric Feature Mapping (ISOMAP) not only has high complexity but also can not learn new samples. L-ISOMAP has lower complexity by only preserving the geodesic distances between some landmark points. However, landmark point set randomly selected often leads to worse embedding results. A manifold learning algorithm based on the small world model was proposed, which only preserve the geodesic distances between each point and its k nearest neighbors as well as some distant points randomly chosen according to the small world model. The deepest gradient descent method was used to optimize the iterative process to obtain the low dimensional representation of data. The theoretic analysis demonstrates that the complexity of the proposed algorithm is far below one of ISOMAP. The stress function and the residual variance were used to compare the three methods. The experiments show that the results from the new method are close to those from ISOMAP and are superior to those from L-ISOMAP. Moreover, the algorithm can treat new data and is also not sensitive to noise.

关 键 词:流形学习 等距特征映射 最速梯度下降 小世界模型 标志点 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP301.6[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象