检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]贵州师范学院数学与计算机科学学院,贵州贵阳550018
出 处:《海南师范大学学报(自然科学版)》2010年第3期253-255,263,共4页Journal of Hainan Normal University(Natural Science)
基 金:贵州省科技厅自然科学基金资助项目(2010GZ77391);贵州师范学院自然科学基金项目(200901006)
摘 要:设p,q均为素数,且p>q,对pq3阶群进行了完全分类并获得了其全部构造:1)当q不整除p-1且p不整除(q2+q+1)时,G恰有5个彼此不同构的类型;2)当q不整除p-1但p整除(q2+q+1)时,G恰有6个彼此不同构的类型;3)当q整除p-1但q2不整除p-1且p不整除(q2+q+1)时,G恰有12个彼此不同构的类型;4)当q整除p-1且p整除(q2+q+1)但q2不整除p-1时,G恰有13个彼此不同构的类型;5)当q2整除p-1但q3不整除p-1时,G恰有14个彼此不同构的类型;6)当q3整除p-1时,G恰有15个彼此不同构的类型.Letting p,q be odd primes such that pq, letting G be a finite group of order pq3, the isomorphic classification of G were discussed, and their presentations are completely described.We have showed that:1) If q doesn't divide (p-1) and p doesn't divide (q2+q+1), G has 5 nonisomorphic presentations; 2) If q doesn't divide (p-1) and p divides (q2+q+1), G has 6 nonisomorphic presentations; 3) If q divides (p-1) and q2 doesn't divide (p-1) and p doesn't divide (q2+q+1), G has 12 nonisomorphic presentations; 4) If q divides (p-1)) and q2 doesn't divide (p-1) and p divides (q2+q+1), G has 13 nonisomorphic presentations; 5) If q2 divides (p-1) and q3 doesn't divide (p-1), G has 14 nonisomorphic presentations; 6) If q3 divides(p-1), G has 15 nonisomorphic presentations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15