pq^3阶群的完全分类  被引量:10

Classification of Finite Groups of Order pq^3

在线阅读下载全文

作  者:陈松良[1] 欧阳建新[1] 李惊雷[1] 

机构地区:[1]贵州师范学院数学与计算机科学学院,贵州贵阳550018

出  处:《海南师范大学学报(自然科学版)》2010年第3期253-255,263,共4页Journal of Hainan Normal University(Natural Science)

基  金:贵州省科技厅自然科学基金资助项目(2010GZ77391);贵州师范学院自然科学基金项目(200901006)

摘  要:设p,q均为素数,且p>q,对pq3阶群进行了完全分类并获得了其全部构造:1)当q不整除p-1且p不整除(q2+q+1)时,G恰有5个彼此不同构的类型;2)当q不整除p-1但p整除(q2+q+1)时,G恰有6个彼此不同构的类型;3)当q整除p-1但q2不整除p-1且p不整除(q2+q+1)时,G恰有12个彼此不同构的类型;4)当q整除p-1且p整除(q2+q+1)但q2不整除p-1时,G恰有13个彼此不同构的类型;5)当q2整除p-1但q3不整除p-1时,G恰有14个彼此不同构的类型;6)当q3整除p-1时,G恰有15个彼此不同构的类型.Letting p,q be odd primes such that pq, letting G be a finite group of order pq3, the isomorphic classification of G were discussed, and their presentations are completely described.We have showed that:1) If q doesn't divide (p-1) and p doesn't divide (q2+q+1), G has 5 nonisomorphic presentations; 2) If q doesn't divide (p-1) and p divides (q2+q+1), G has 6 nonisomorphic presentations; 3) If q divides (p-1) and q2 doesn't divide (p-1) and p doesn't divide (q2+q+1), G has 12 nonisomorphic presentations; 4) If q divides (p-1)) and q2 doesn't divide (p-1) and p divides (q2+q+1), G has 13 nonisomorphic presentations; 5) If q2 divides (p-1) and q3 doesn't divide (p-1), G has 14 nonisomorphic presentations; 6) If q3 divides(p-1), G has 15 nonisomorphic presentations.

关 键 词:有限群 同构分类 群的表写 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象