检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:史先鹏[1,2] 刘士荣[2] 刘斐[2] 李永刚[3]
机构地区:[1]华东理工大学自动化研究所,上海200237 [2]杭州电子科技大学自动化学院,杭州310018 [3]上海理工大学系统科学与工程系,上海200093
出 处:《华东理工大学学报(自然科学版)》2010年第5期695-701,共7页Journal of East China University of Science and Technology
基 金:国家自然科学基金项目(60675043);浙江省科技计划基金项目(2007C21051)
摘 要:针对非完整移动机器人的轨迹跟踪控制问题,提出了一种鲁棒项系数自调整的神经网络滑模自适应控制策略。首先由反推法设计运动学控制器;其次,基于滑模控制设计动力学控制器,利用径向基神经网络(RBF)自适应逼近系统非线性不确定性上界,实现鲁棒项系数自调整,克服了传统滑模控制鲁棒项设计需要已知系统不确定性上界的缺陷,实现了速度跟踪。李亚普诺夫稳定性定理保证了闭环系统的稳定性及跟踪误差的渐近收敛。仿真结果进一步验证了所提方案的可行性。An adaptive neural sliding mode control strategy with the self-tuning of robust item coefficients is proposed for the trajectory tracking of non-holonomic wheeled mobile robots.Firstly,a kinematic controller is designed by means of backstepping technique.Then,the dynamic controller is proposed based on sliding mode control method,in which the upper bound of the uncertainties is adaptively approximated by RBF neural networks and the robust item coefficients are self-tuned.Thus,the disadvantage of the traditional sliding mode controller,which needs to know the boundary of the system uncertainties in advance,is overcome.By using Lyapunov stability theorem,both the stability of closed-loop system and the asymptotical convergence of tracking errors are ensured.Simulation results further validate the effectiveness of the proposed controller.
关 键 词:机器人 自调整 不确定性上界 神经网络 滑模控制
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46