检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏信息职业技术学院计算机工程系 [2]上海理工大学计算机工程学院
出 处:《河南科技》2010年第11期50-51,共2页Henan Science and Technology
基 金:中国博士后科学基金项目(20090460323)
摘 要:由Eberhart和Kennedy等于1995年提出的粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于种群搜索的自适应进化计算技术,它源于对鸟群和鱼群群体觅食运动行为的模拟。与其他生物进化算法类似,PSO算法是一种基于迭代过程的优化方法。
关 键 词:粒子群算法 粒子群优化算法 SWARM 自适应进化 PSO算法 计算技术 运动行为 进化算法
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117