检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《传感技术学报》2010年第10期1376-1380,共5页Chinese Journal of Sensors and Actuators
基 金:国家自然科学基金资助(30571076)
摘 要:旨在探讨一种快速检测猪肉储藏时间的电子鼻方法。本研究采用德国Airsense公司的PEN2型便携式电子鼻对不同储藏时间(0~7d)的猪肉样品进行检测,每天检测42个样品,每个样品质量为10g,密封时间为5min。提取第60s数据进行线性判别分析,结果显示电子鼻能较好的区分不同储藏天数的猪肉样品。同时用逐步判别分析和BP神经网络对猪肉储藏时间进行预测,训练集的准确率,前者为100%,后者为94.17%,而预测集的准确率,前者为97.92%,后者为93.75%。研究表明电子鼻技术有望在猪肉新鲜度快速检测上得到广泛的应用。In this study,a rapid detection method based on electronic nose for pork freshness was developed.An electronic nose(E-nose,PEN 2)was employed to classify pork groups with different storage time(0~7 d),42 samples were tested everyday.The mass of each sample was 10 g,and the headspace-generated time was 5 min.The 60th data from the response of the E-nose was extracted for further analysis.After employing the Linear Discriminant Analysis(LDA),samples could be well classified according to their storage time.Stepwise Linear Discriminant Analysis(Step-LDA)and Back Propagation Neural Network(BPNN)were also employed to predict the storage time of the samples.The result showed that Step-LDA got 100% training accuracy with 97.92% prediction accuracy,and BPNN got 94.17% training accuracy with 93.75% prediction accuracy.This study implied that electronic nose method could be expected to more wildly used on pork freshness detection.
分 类 号:TS251[轻工技术与工程—农产品加工及贮藏工程] TP212[轻工技术与工程—食品科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222