检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘清[1] 吴志刚[1] 郭建明[1] 李龙利[1]
机构地区:[1]武汉理工大学自动化学院,湖北武汉430063
出 处:《控制理论与应用》2010年第9期1269-1272,共4页Control Theory & Applications
基 金:高等学校博士学科点专项科研基金资助(20060497017)
摘 要:使用梯度方向直方图(HOG)来检测目标,需要大量的,有代表性的样本来训练分类器.一个目标的HOG,其特征在不同的摄像机视角和不同的光轴旋转角下,并不相同.因此,使用不同视角下的混合样本集来训练分类器时,目标检测的准确率受到样本噪声的影响将会降低.基于摄像机成像的基本原理,提出了一种转换算法,可以把一个样本在某个视角下的HOG特征转换成另一个视角下的HOG特征.这样既降低了分类器训练时需要采集的正负样本数量,又提高了支持向量机(SVM)分类的准确性,从而提高了目标检测的准确性.大量目标检测实验结果表明本文提出的算法是有效的.In applying the histograms of oriented gradient(HOG) to detect an object, we need a great number of representative image samples to train the classifier. Since the HOG characteristic changes in different vision-angle and different rotation-angle, the detection accuracy will be decreased if images of different vision-angle or rotation-angle are used to train the classifier. By the imaging principle of the camera, we develop an algorithm for converting the HOG characteristic in one vision-angle and rotation-angle to the HOG characteristic in another vision-angle and rotation-angle. Thus, the required number of positive and negative samples for training the classifier is reduced and the classification accuracy of the support-vector-machines(SVM) is raised, eventually resulting in an increase in the object detection accuracy and robustness. Many object-detection experimental results show that this conversion algorithm is effective. This indicates that the proposed algorithm is an efficient tool for HOG-based object detection in practical engineering projects.
关 键 词:目标检测 视角 旋转角 梯度方向直方图HOG 支持向量机
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117