检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京建筑工程学院电气与信息工程学院,北京100044
出 处:《系统仿真学报》2010年第12期2909-2914,共6页Journal of System Simulation
基 金:建设部2009年科技计划项目(2009-K1-26);北京建筑工程学院2009年博士基金项目(100900915)
摘 要:将神经网络、模糊控制与非线性预测优化控制结合起来,提出了神经网络模糊预测优化控制方法,采用前馈神经网络作为预测模型,利用贝叶斯正则化方法对模型进行了辨识,以自调整模糊控制器作为优化控制器,通过多步预测方式,系统的优化性能指标综合考虑温度偏差最小和能耗最小这两方面因素,应用该方法对制冷工况变风量空调系统的送风温度和回风温度(室内温度)进行了仿真控制研究。控制结果表明了该方法的有效性,控制效果良好,并且可以达到节省能耗的目的。Artificial neural network,fuzzy control and nonlinear optimal predictive control were combined.The algorithm of neural network nonlinear fuzzy predictive optimal control was proposed.Feed-forward neural network was adopted as the predictive model of the cooling VAV system.The model was identified by the method of Bayesian regularization.The self-adjusting fuzzy controller was adopted as optimal controller.The algorithm was applied in the cooling VAV system with multi-step predictive method.Indoor temperature and supply air temperature was controlled aimed at minimum temperature deviation and minimum energy consumption by this scheme in Matlab.Simulation results illustrate the effectiveness of this technique,and in the meantime illustrate that this technique can save energy consumption.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28