基于混合最小二乘支持向量机网络模型的非线性系统辨识  被引量:7

New identification approach for nonlinear systems based on the combination network model of least squares and support vector machines

在线阅读下载全文

作  者:陈杰[1] 朱琳[1] 

机构地区:[1]北京理工大学信息科学技术学院自动控制系,北京100081

出  处:《控制理论与应用》2010年第3期303-309,共7页Control Theory & Applications

基  金:北京市教育委员会共建重点实验室资助项目(CSYS100070417)

摘  要:针对基于输入输出数据的非线性系统辨识问题,提出一种新的混合最小二乘支持向量机(LS-SVMs)网络模型及相应的学习算法.该算法将系统的辨识问题动态自适应的划分为若干子问题,将支持向量机(SVM)用于各子模块辨识;通过分析模型的统计学特性,给出基于整体框架优化的系统参数辨识方法.针对系统中参数相关联的特性,采用期望条件最大化(ECM)算法对其进行条件辨识,同时结合正则化理论和最小二乘法,保证各专家模块的结构风险最小化辨识原则.试验结果表明,该方法兼具良好的辨识精度和泛化性能.A novel combination network model of least squares and support vector machines(MLS-SVMs) and the as-sociate learning algorithm for identifying nonlinear systems based on the input-output data are proposed. In the model, the identification task is dynamically decomposed into several subtasks according to the physical or statistical natures of the problem. The SVMs are applied as learning machines to every subtask. After analyzing the statistical characteristics of the model in the formal characterization, we give an algorithm for training the MLS-SVMs, based on the frame optimiz-ing principle. The expectation conditional maximization(ECM) algorithm is applied to solve the dependence problem of parameters. Regularization theory and least squares method assure the identification principle of minimal construction risk for expert modules. Experiment illustrates good performance of the proposed method by high approximation accuracy and generalization levels.

关 键 词:混合专家系统 最小二乘支持向量机 非线性系统辨识 期望条件最大化 正则化 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象