基于条件随机域模型的中文实体关系抽取  被引量:2

Chinese Entity Relation Extraction Based on Conditional Random Fields Model

在线阅读下载全文

作  者:周晶 

机构地区:[1]南京高等职业技术学校计算机管理系,南京210019

出  处:《计算机工程》2010年第24期192-194,共3页Computer Engineering

摘  要:针对信息抽取领域中存在的抽取结果难以满足需要的问题,给出基于条件随机域模型的方法,以解决组块标注和实体关系抽取问题。通过定义中文组块和实体关系的标注方式,选择比较通用的《人民日报》语料,训练出效率较高的二阶模板来抽取文本中的实体关系。实验结果表明,该方法可以获得更好的抽取效果。To solve disorder among information items and lack of information item in the field of information extraction, this paper proposes a solution to deal with chunks labeling and Entity Relation Extraction(ERE) based on the conditional random fields model. This paper defines the representation of Chinese chunk and entity relation, and uses label dataset of "People's Daily" as sample dataset to train an optimized model for the entity extraction. Experimental results show this method has better extraction performance.

关 键 词:信息抽取 组块标注 实体关系抽取 条件随机域模型 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象