检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周晶
机构地区:[1]南京高等职业技术学校计算机管理系,南京210019
出 处:《计算机工程》2010年第24期192-194,共3页Computer Engineering
摘 要:针对信息抽取领域中存在的抽取结果难以满足需要的问题,给出基于条件随机域模型的方法,以解决组块标注和实体关系抽取问题。通过定义中文组块和实体关系的标注方式,选择比较通用的《人民日报》语料,训练出效率较高的二阶模板来抽取文本中的实体关系。实验结果表明,该方法可以获得更好的抽取效果。To solve disorder among information items and lack of information item in the field of information extraction, this paper proposes a solution to deal with chunks labeling and Entity Relation Extraction(ERE) based on the conditional random fields model. This paper defines the representation of Chinese chunk and entity relation, and uses label dataset of "People's Daily" as sample dataset to train an optimized model for the entity extraction. Experimental results show this method has better extraction performance.
关 键 词:信息抽取 组块标注 实体关系抽取 条件随机域模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49