一种快速分层递阶DSmT近似推理融合方法(A)  被引量:18

A Fast Approximate Reasoning Method in Hierarchical DSmT(A)

在线阅读下载全文

作  者:李新德[1] Jean Dezert 黄心汉[3] 孟正大[1] 吴雪建[1] 

机构地区:[1]东南大学自动化学院复杂工程系统测量与控制教育部重点实验室,江苏南京210096 [2]ONERA(The French Aerospace Lab),29 Av.de la Division Leclerc,Chatillon,france92320 [3]华中科技大学控制系,湖北武汉430074

出  处:《电子学报》2010年第11期2566-2572,共7页Acta Electronica Sinica

基  金:国家自然科学基金(青年基金)(No.60804063;No.60805032);江苏省自然科学基金(No.BK2010403);图像信息处理与智能控制教育部重点实验室开放基金(No.200902);东南大学创新基金(No.3208000501);航空科学基金(No.20100169001)

摘  要:本文提出了一种分层递阶的DSmT快速近似推理融合方法,该方法针对超幂集空间中仅单子焦元具有信度赋值的情况,利用二叉树或三叉树分组技术对其刚性分组,与此同时,对每个信息源对应的各个分组焦元进行信度赋值求和,以便实现细粒度超幂集空间向粗粒度超幂集空间映射.然后运用DSmT组合规则和比例冲突分配规则对粗化超幂集空间的两个信息源进行融合,保存该融合结果作为父子之间节点连接权值,然后对每个分组焦元信度赋值归一化处理,通过设定树的深度,来确定分层递阶的次数.最后通过从多个角度比较新、老方法,从而充分地验证了新方法的优越性.A kind of fast approximate reasoning method in hierarchical DSmT is proposed.This method is only fit for the case that there are only singleton focal elements with assignments in hyper-power set.These focal elements in hyper-power set are forced to group through bintree or tritree technologies.At the same time,the assignments of focal elements in these different groups corresponding to each source are added up respectively,in order to realize the mapping from the refined hyper-power set to the coarsened one.And then,two sources with the coarsened hyper-power set are combined together according to DSmC(Classical DSm combination rule) and PCR5(Proportional conflict redistribution No.5).The fused results from different groups will be saved as the connecting weights between father and children nodes.And then,all assignments of focal elements in different groups will be normalized respectively.Tree depth is set,in order to decide the iterative times in hierarchical system.Finally,by comparing new method with old one from different views,the superiority of new one over old one is testified well.

关 键 词:近似推理 信息融合 分层递阶 Dezert-Smarandache THEORY 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象