检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑延履[1]
机构地区:[1]武汉大学
出 处:《数学杂志》1990年第1期33-38,共6页Journal of Mathematics
摘 要:本文定义了弱 S-正规子群的概念,并得到利用这一概念来刻划 Sylow 塔群、超可解群,(?)群和(?)群的几个结果。A subgroup H of a finite group G is called a weakly S-normal subgroupof G if there is a Sylow p-subgroup Sp of G such that HS_p=S_pH for eachprime P||G|.In this paper we present characterization of some classes ofgroups through weakly S-normal subgroups.Theorem 1.A finite group G is (?)-group if and only if each primitvesubgroup of G is weakly S-normal subgroup of G.Theorem 2.A finte group G is (?)-group if and only if each subgroup of Gis weakly S-normal subgroup of G.Theorem 3 A finite group G is supersolvable if and only if each subgr-oup H≤G contains a weakly S-normal subroup of order d for each divisor dof |H|.Theorem 4 A finite group G is (?)-group if and only ifi)the nilpotent residual r_∞(G)of G is a nilpotent Hall subgroup;ii)for all H≤r_∞(G),or H is a weakly S-normal snbgroup of G,orN_G(H)=M_1N(M_1,N is respectively π′,π-Hall subgroup of N_G(H) whereπ=π(r_∞(G)),M_1H is not a primitive subgroup of N_G(H).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171