检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学计算机科学与工程学院,成都610054
出 处:《控制与决策》2010年第12期1799-1803,1809,共6页Control and Decision
基 金:国家自然科学基金项目(60973120);国家863计划项目(2007AA01Z440)
摘 要:为获得鲁棒性的全局异常检测模型,需要多个组织之间的知识共享.存在的分布式异常检测技术常基于原始数据的交换或共享,侵犯了各自的隐私权,令人难以接受.基于隐私保护的分布式异常检测方法,采用本地模型共享技术,在保证数据隐私性的同时完成全局异常检测任务.通过7种异常检测模型在仿真和真实数据集上的实验说明,所提出的方法在保护数据隐私的同时,其全局异常检测效果能接近甚至超过将所有数据集中后建立的全局模型.To achieve robust global anomaly detection models,different companies or organizations should share their knowledge of data.However,the sharing of production data will lead to violation of privacy.It is unaccepted to co-operate with the risk of disclose private or sensitive data.The existing distributed anomaly detection techniques always neglect the requirement and are based on the sharing or exchanging of production data.The proposed privacy preserving distributed anomaly detection method employs local model sharing technology to preserve the privacy of data.Mean while,the proposed method has comparable or even better performance on the synthetic as well as several real life data sets by seven different anomaly detection models.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44