检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]昆明医学院,云南昆明650031
出 处:《现代电子技术》2011年第3期65-67,71,共4页Modern Electronics Technique
摘 要:网络流量时间序列具有复杂的非线性和不确定性特征,故提出以相空间重构理论与递归神经网络相结合的网络流量预测方法。以相空间重构理论确定最佳延迟时间和最小嵌入维数,重构网络流量时间序列。将重构后的时间序列运用递归神经网络来训练,得到合适的模型,并用于网络节点中网络流量的预测。将该方法应用于实际数据预测,其结果与传统的时间序列预测方法结果相比较,提高了预测精度和稳定性,证明了该预测模型和方法在实际时间序列预测领域的有效性和实用性。For the network flow time series has complex non-linear and uncertainty characters,a approach of network flow prediction was presented according to the phase space reconstruction theory (PSRT) combined with recurrent neural network (RNN). The optimal delay tmie and minimal embedding dimension are determined by PSRT, and then the network traffic time series is reconstructed. The reconstructed time series is trained by RNN to obtain a suitable model, which is applied to the pre- diction of network flow in the network nodes. The new method applied to the prediction of the actual data is more accurate and stable in comparison with the method of traditional time series prediction. The results show that the new method is effective and practical in the field of the actual time-sequence prediction.
分 类 号:TN915-34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145