基于混沌时间序列和神经网络的网络流量预测方法  被引量:2

Approach of Network Flow Prediction Based on Chaotic Time Series and Neural Network

在线阅读下载全文

作  者:奠石镁[1] 何蓉[1] 付绍武[1] 

机构地区:[1]昆明医学院,云南昆明650031

出  处:《现代电子技术》2011年第3期65-67,71,共4页Modern Electronics Technique

摘  要:网络流量时间序列具有复杂的非线性和不确定性特征,故提出以相空间重构理论与递归神经网络相结合的网络流量预测方法。以相空间重构理论确定最佳延迟时间和最小嵌入维数,重构网络流量时间序列。将重构后的时间序列运用递归神经网络来训练,得到合适的模型,并用于网络节点中网络流量的预测。将该方法应用于实际数据预测,其结果与传统的时间序列预测方法结果相比较,提高了预测精度和稳定性,证明了该预测模型和方法在实际时间序列预测领域的有效性和实用性。For the network flow time series has complex non-linear and uncertainty characters,a approach of network flow prediction was presented according to the phase space reconstruction theory (PSRT) combined with recurrent neural network (RNN). The optimal delay tmie and minimal embedding dimension are determined by PSRT, and then the network traffic time series is reconstructed. The reconstructed time series is trained by RNN to obtain a suitable model, which is applied to the pre- diction of network flow in the network nodes. The new method applied to the prediction of the actual data is more accurate and stable in comparison with the method of traditional time series prediction. The results show that the new method is effective and practical in the field of the actual time-sequence prediction.

关 键 词:时间序列 相空间重构 神经网络 网络流量预测 

分 类 号:TN915-34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象