具偏差变元的一类三阶微分方程的周期解  被引量:1

Periodic Solutions for a Class of Third Order Differential Equations with Deviating Argument

在线阅读下载全文

作  者:潘立军[1] 

机构地区:[1]嘉应学院数学学院,广东梅州514015

出  处:《四川师范大学学报(自然科学版)》2011年第1期71-76,共6页Journal of Sichuan Normal University(Natural Science)

基  金:广东省自然科学基金(9151008002000012)资助项目

摘  要:利用Mawhin重合度理论,研究了具偏差变元的一类三阶微分方程x'''(t)+f(x(t),x(t-τ0(t)),x'(t-τ1(t)),x″(t-τ2(t)))=p(t)的周期解的问题.结合Schwarz不等式,运用分析的技巧对集合Ω的先验界作出准确的估计,得到周期解存在的新的结果.所得定理不仅依赖于f(x,y,z,w)而且依赖于偏差变元τ0(t),τ1(t)和τ2(t),并举例说明结果的有效性.By employing the coincidence degree theory of Mawhin,we investigate the existence of periodic solutions for third order differential equations with deviating argument x'''(t)+f(x(t),x(t-τ0(t)),x′(t-τ1(t)),x″(t-τ2(t)))=p(t).Coupled with Schwarz inequality and technique of analysis,an estimation of prior bound of set Ω is given,then some new results on the existence of periodic solutions of the equations are obtained.Our theorems are related to f(x,y,z,w) as well as the deviating argument τ0(t),τ1(t) and τ2(t).Meanwhile,an example is given to illustrate the effect of our results.

关 键 词:微分方程 偏差变元 周期解 重合度 

分 类 号:O175.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象