时标积分边界条件脉冲动力方程解的存在性  

Existence of Solution for Impulsive Dynamic Equations on Time Scales with Integral Boundary Conditions

在线阅读下载全文

作  者:崔学英[1] 

机构地区:[1]太原科技大学应用科学学院,山西太原030024

出  处:《中北大学学报(自然科学版)》2011年第1期80-83,共4页Journal of North University of China(Natural Science Edition)

摘  要:在利用巴拿赫压缩不动点定理得到线性脉冲初值问题存在唯一解的基础上,考虑时标上一阶拥有积分边界条件的脉冲动力方程,通过上下解方法结合单调迭代技术得到所考虑问题存在两个单调并且一致收敛的序列,从而得到耦合极值解(极值解)及唯一解存在的充分条件.研究结果包括了初值问题,所得结果推广并丰富了已有文献的结论,并举例说明了该结论的应用.On the basis of the existence of unique solution of the linear impulsive initial value problem deduced by the Banach contraction fixedpoint theorem,by considering first-order impulsive equations with integral boundary conditions on time scales,two monotone and uniform convergence sequences were obtained with the method of upper and lower solutions and monotone iterative technique.The sufficient condition that guarantees the existence of coupled extremal solutions(extremal solutions) and the uniqueness of solution were obtained.The solutions to initial value problem were also researched.Conclusions of this paper expend some conclusions of the existing literature.One example was given to illustrate the applications of above results.

关 键 词:时标 积分边界条件 上下解方法 单调迭代技术 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象