检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔学英[1]
机构地区:[1]太原科技大学应用科学学院,山西太原030024
出 处:《中北大学学报(自然科学版)》2011年第1期80-83,共4页Journal of North University of China(Natural Science Edition)
摘 要:在利用巴拿赫压缩不动点定理得到线性脉冲初值问题存在唯一解的基础上,考虑时标上一阶拥有积分边界条件的脉冲动力方程,通过上下解方法结合单调迭代技术得到所考虑问题存在两个单调并且一致收敛的序列,从而得到耦合极值解(极值解)及唯一解存在的充分条件.研究结果包括了初值问题,所得结果推广并丰富了已有文献的结论,并举例说明了该结论的应用.On the basis of the existence of unique solution of the linear impulsive initial value problem deduced by the Banach contraction fixedpoint theorem,by considering first-order impulsive equations with integral boundary conditions on time scales,two monotone and uniform convergence sequences were obtained with the method of upper and lower solutions and monotone iterative technique.The sufficient condition that guarantees the existence of coupled extremal solutions(extremal solutions) and the uniqueness of solution were obtained.The solutions to initial value problem were also researched.Conclusions of this paper expend some conclusions of the existing literature.One example was given to illustrate the applications of above results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15