检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学光电学院光电成像技术与系统教育部重点实验室,北京100081 [2]华北科技学院计算机系,河北三河065201
出 处:《计算机工程与设计》2011年第3期984-987,共4页Computer Engineering and Design
摘 要:针对Adaboost人脸检测算法在分类器训练过程中耗时较多的问题,对Adaboost算法进行了详细分析,提出了加快寻找每一轮最佳弱分类器的四点均值法。该方法对每个特征,计算所有训练样本对应的特征值,并将其从小到大排序,求相邻的4个特征值的平均值,该平均值作为阈值,计算错误率,找出最佳弱分类器。减少特征量,修改弱分类器权重,加快收敛速度,使用不同遮挡部位的人脸样本训练分类器,实现了局部遮挡人脸的检测。实验结果表明,该方法明显提高了训练速度,缩短训练时间,并能较准确地检测局部遮挡人脸。Aimed at the time-consuming problem of Adaboost face detection algorithm in the training classifier process,a detailed analysis of Adaboost algorithm is carried out,the four-point average method is proposed to speed up and look for the best weak classifier.Using this method,for each feature,the corresponding feature value of all training samples are calculated and ordered from small to large,a average values of four adjacent feature are found,the average is looked as a threshold to calculate the error rate and find the best weak classifier,and reduces features,and modifies the weight of weak classifier to increase the convergence speed.Using different partial occlusion face samples train classifier,partial obscured face detection is realizded.The experimental results show that the method can significantly improve training speed,shorten training time,and accurately detect partially obscured faces.
关 键 词:ADABOOST算法 人脸检测 四点均值法 局部遮挡人脸 分类器
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229