近红外光谱分析技术测定芝麻水分含量的研究  被引量:11

Measurement of Moisture Content in Sesame by Near-infrared Spectroscopy

在线阅读下载全文

作  者:郭蕊[1] 王金水[1] 金华丽[1] 罗莉[1] 闫李慧[1] 谢安国[1] 

机构地区:[1]河南工业大学粮油食品学院,河南郑州450052

出  处:《现代食品科技》2011年第3期366-369,共4页Modern Food Science and Technology

基  金:河南省产业技术研究与开发项目(102109000007);河南省科技攻关项目

摘  要:建立了基于FOSS近红外谷物分析仪快速测定芝麻水分含量的模型,探讨了光学处理和数学处理等因素对模型的影响进行,并对模型进行了内部验证和外部检验。实验结果表明最佳的建模参数为:光学处理采用标准正常化处理(SNV only),数学处理技术采用"2,4,4,1"。得到的定标方程的定标标准偏差(SEC)为0.0430,定标相关系数(RSQ)为0.9933,交叉检验标准偏差平均值(SECV)为0.1434,交叉验证相关系数(1-VR)为0.9254,模型验证相关系数(RSQ)为0.941,预测标准偏差(SEP)为0.238。该方法可以作为快速测定芝麻水分含量的一种无损方法,应用于芝麻品质快速评价的研究。The model of determining sesame moisture was built using near infrared spectroscopy(NIRS) and the FOSS system as the analyzer.The influences on the model of factors,such as the mathematics methods and optics treatment methods were studied.The calibrations of the moisture content in sesame were also performed.The results showed that the best factors were SNV only for optics treatment method and "2,4,4,1" for mathematics method.The square error of cross(SEC),the average determination coefficient of validation(RSQ),the square error of cross validation(SECV),the correlation coefficient(1-VR),the average determination coefficient of validation(RSQ) and the standard error of prediction(SEP) were 0.0430,0.9933,0.1434,0.9254,0.941 and 0.238,respectively.This model could determine the moisture content in sesame used as a rapid and lossless method to detect the quality of sesame seeds.

关 键 词:近红外光谱 芝麻 水分 

分 类 号:S565.3[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象