检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学控制一体化技术国家级重点实验室,北京100191 [2]西安飞行自动控制研究所,陕西西安710065
出 处:《全球定位系统》2010年第6期1-6,共6页Gnss World of China
基 金:航空基础科学基金(20090818004;20100851018)
摘 要:在系统模型误差和噪声统计特性未知时,为防止滤波发散和提高系统的实时性,提出了一种模糊自适应Kalman滤波算法。该算法利用滤波异常判据获得一个滤波状态因子,进而利用模糊推理系统在线调整量测噪声协方差阵的值,使滤波实现自适应。将该算法应用到惯导/双星组合导航系统中,并和简化的Sage-Husa自适应滤波算法进行仿真比较。仿真结果表明:在滤波精度相当的情况下,该算法简化了运算,提高了实时性。In order to avoid the divergence and improve the real-time property of the filter,an Adaptive Kalman Filtering(AKF) algorithm is presented,which obtained a factor of filtering state by using the criterion of filtering anomalies,and the measurement noise covariance matrix is confirmed by using this factor.AFK is realized by changing the measurement noise covariance according to the state of the filtering.AKF is applied to the INS/DS(Inertial Navigation System/Double-star System) integrated navigation system,and compared it with the conventional Kalman filtering and the simplified Sage-Husa filtering,the simulation results showed that the AKF simplified the computation and improved the real-time property with the same accuracy of simplified Sage-Husa filtering.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175