检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨振[1] 王三民[1] 范叶森[1] 刘海霞[1]
出 处:《哈尔滨工业大学学报》2011年第3期107-110,共4页Journal of Harbin Institute of Technology
基 金:国家高技术研究发展计划资助项目(SQ2008AA04Z3474065)
摘 要:为了研究面齿轮传动的非线性动力学分岔特性,建立了包含支承、齿侧间隙、时变啮合刚度、综合误差、阻尼和外激励等参数的系统弯-扭耦合动力学模型,并使用PNF(Poincaré-Newton-Floquet)方法对系统进行了求解.计算结果表明:当时变啮合刚度幅值系数从0.4增加到0.5时,系统会由倍周期分岔进入混沌;当啮合阻尼比由0.061 000 0减小到0.060 000 0时,系统会经过拟周期分岔进入混沌;当量纲一化综合传动误差幅值从0.120减小到0.112时,系统会发生边界激变后进入混沌.To study the non-linear bifurcation characteristics of face-gear transmission system, a nonlinear dynamic model is presented. This model includes bearings, backlash, time-varying meshing stiffness, general transmission error, meshing damping, and external load, etc. The PNF(Poincare-Newton-Floquet) method is used to solve the dynamic differential equations. The calculation results show: when the amplitude coefficient of time-varying meshing stiffness increases from 0.4 to 0. 5, the system will go into chaos through period-doubling bifurcation; when the meshing damping ratio decreases from 0. 061 000 0 to 0. 060 000 0, the system will enter chaos through quasi-periodicity bifurcation; when non-dimension amplitude of general transmission error decreases from 0. 120 to 0. 112, the system will appear boundary cataclysm.
分 类 号:TH132.4[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157