否定希伍德的“有名反例”和他证明的“五色定理”  

Deny Heawood's "the famous counter-example" and "the Five Color theorem" of Heawood proving

在线阅读下载全文

作  者:董德周 

机构地区:[1]中国管理科学院节能技术研究所,北京100080

出  处:《前沿科学》2011年第1期78-85,共8页Frontier Science

摘  要:我在研究《四色定理普遍地证明》中,发现希伍德证明了震动数学界100多年的"有名反例"和"五色定理"都是错误的。我揭开了希伍德在证明"反例"上有重大错误的秘密,并证明反例是4-色的,从而否定希伍德的"有名反例";同时我指出了希伍德对顶点数套用数学归纳法的格式来证明"五色定理"的方法是错误的,从而否定了希伍德证明的"五色定理",为《四色定理普遍地证明》打下了基础。I research "Four Color Theorems Are Proved Generally", I discovered that "the famous counterexample" and "the Five Color theorem" which shook mathematics field more than 100 years proved by Headwood are wrong. I uncover a secret that there is a significant wrong in Heawood proved "counterexample', and I proved that Heawood's counter-example is 4-color. Thus I deny Heawood's "the famous counter-example'. I am pointed out that Heawood applied the mathematical induction for the vertex number to prove "the Five Color theorem" is incorrect, thus I deny "the Five Color theorem" of Headwood proving. For the "Four Color Theorems Are Proved Generally" has built the foundation.

关 键 词:四色定理 五色定理 希伍德 最大平面图 反例 不可约图 肯普链 顶点 度数 数学归纳法 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象